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Abstract A computational model combining reinforcement learning ap-
proach with an action selection (A-S) module is proposed to initiate a model
for addiction. The A-S module is realized as a nonlinear dynamical system.
The reinforcement mechanism adapts the parameters of the A-S module till
the acquisition of nicotine addiction is set up. The interpretation of the pa-
rameters from the point of view of neuroscience is given and in order to
investigate the dynamical behavior of A-S module, its bifurcation diagram
is obtained. The result obtained encourages expanding the model to include
the role of limbic structures on acquisition of addiction further.

1 Introduction

The interaction between limbic and cortical structures has been considered
in explaining a large spectrum of cognitive processes including the addiction
[1, 2, 3]. In this work, an initiate model of addiction based on the interactions
of limbic and cortical structures is proposed. The model is influenced from a
computational model of A-S through reinforcement learning [4] and nicotine
addiction [5]. While the model is capable of revealing the effect of limbic
system on addiction, it needs to be developed further to include the overall
influence of limbic structures.

The main idea is to use dynamical systems approach in modeling a cogni-
tive process, thus the behavior of A-S module is explained using bifurcation
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diagrams obtained by XPPAUT, while the addiction process is simulated
with an m-file in MATLAB.

In the next section a brief summary of neural mechanisms considered in
obtaining the model is given. In section 3, first the proposed model is intro-
duced, then the behavior of A-S module is investigated and the simulation
results are discussed. In the conclusion, how the proposed initiate model can
be developed is discussed.

2 Neural Mechanisms of Addiction

Rewards are sensed as “making experiences better”, and are therefore desired
and pursued [6]. The behavior frequency, which lead to rewards, are increased
by positive reinforcement. Addiction is a behavioral disorder characterized by
compulsive drug seeking and repeated relapses into drug use [7]. It is thought
that some irreversible modifications in the neural structures and/or synaptic
plasticity cause addiction. Rewards in the form of drugs are experienced as
more valuable compared to other rewards, thus they cause the addict’s life’s
goal to become compulsive seeking and focusing on obtaining drugs.

The most effective neurotransmitter in addiction mechanism is dopamine
(DA). The neural basis of the drug rewarding is the mesolimbic DA system.
The value of the possible choices based on the reward gains of the past actions
is stored in the memory. The organisms use this stored information to pre-
dict the results of each possible action as reward or punishment. An error is
computed by comparing the outcome of the action and the reward gain of the
prediction. DA is supposed to code this error and shape the future actions in
order to increase reward gain [6]. The midbrain DA systems have important
roles in motor and reward systems as well as in higher order functions such
as cognition and memory [8].

There are two resources of DA secretion especially important for actions
based on reward evaluation (Figure 1.): the ventral tegmental area (VTA) and
the substantia nigra pars compacta (SNc) [9]. The DA neurons in the VTA
project to the limbic forebrain (nucleus accumbens, amygdala, hippocampus)
and the prefrontal cortex (PFC).The DA neurons in the SNc, project to the
dorsal striatum (caudate and putamen) [6]. All of these structures, except the
nucleus accumbens (NA), have excitatory glutamatergic connections with the
VTA which have a key role in VTA cell firing. Alterations in the mesocorti-
cal DA system and its glutamatergic feedback loop causes compulsive drug
seeking and may trigger relapses into drug using [7].

Information obtained by rewards is important especially in reinforcement
learning, and helps deciding between actions [9]. Natural rewards and addic-
tive substances have similar effects on behaviors by increasing the synaptic
DA level in NA [10]. Natural rewards and addictive substances have similar
effects on behaviors by increasing the synaptic DA level in NA. Amygdala and
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Fig. 1 The mesolimbic dopamine subsystem. Red, green, blue and purple arrows show
DA, glutamate, GABA, and acetylcholine secretion paths, respectively. Amy., amygdala;

C, cortex; GPe, globus pallidus externus; GPi/SNr, globus pallidus internus/substantia

nigra pars compacta; HC, hippocampus; LDTg, lateral dorsal tegmental nucleus; NA,
nucleus accumbens; PPTg, pedunculopontine tegmental nucleus; Str, dorsal striatum; Th,

thalamus; VTA, ventral tegmental area.

the PFC, along with NA, have important roles in the evaluation of rewards
and the constitution of memories related with the rewards. The DA release
in NA relates the positive features of a goal with motivation and thus has a
critical role in the formation of reward-related behaviors. In other words, DA
is not required for reward-related learning, but is necessary for motivational
behaviors leading to reward gain. Exposure to a stress factor has similar ef-
fects on excitatory synapses in VTA by enhancing afferent inputs to midbrain
DA cells [11].

The information about the efficient actions in reward gain is stored in dor-
sal striatum. The striatum is part of the circuit involved in learning based on
current rewards to guide the future actions. The dorsal striatum, particularly
the caudate nucleus, is involved in social learning [9]. The PFC guides the
organism successfully to a goal as well as it inhibits actions causing harm.
The DA release in NA, PFC, amygdala, and dorsal striatum identifies the
motivational importance and value of certain experiences. However, the DA
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neurons in the VTA do not have such a role. They serve as the triggering
source of the mesolimbic DA system.

The property of addictive drugs stimulating DA transmission is specific.
Non-psychostimulant drugs such as morphine and nicotine stimulate DA
transmission in the nucleus accumbens shell (NAs). However they do not
increase DA transmission in the medial PFC (mPFC) where mesocortical
DA neurons terminate [12]. Abusive drugs including nicotine, morphine, and
cocaine stimulate DA transmission in NAs, so they increase the activity of
intrinsic and afferent neural input [12]. Adaptive changes in DA transmission
cause non-associative, long-lasting, and eventually irreversible modifications
(sensitization to DA) in the DA system, resulting in addiction [10].

The principal excitatory inputs to the VTA DA neurons are glutamater-
gic projections from the PFC which synapse on DA and γ-aminobutyric acid
(GABA) neurons in the VTA, modulating their activity. The main inhibitory
inputs to the VTA are GABAergic and project from NA and ventral pal-
lidum (VP). Cholinergic projections to the VTA come from pedunculopon-
tine tegmental nucleus (PPTg) and lateral dorsal tegmental nucleus (LDTg)
of the brain stem (Figure 1). Acute effects of nicotine in the VTA affect
GABA neurons in the VTA, leading to a long-lasting excitation of the DA
neurons through lack of inhibition [13, 14, 15]. Desensitization due to nicotine
exposure inhibits VTA GABA neurons so DA neurons in the VTA receive
less inhibitory input resulting increased firing of DA neurons [14].

The model we proposed in this work focuses on the cortico-striato-thalamic
A-S circuit triggered by the DA secretion from the VTA. The basal ganglia
structures GPe, GPi/SNr, and striatum together with PFC and thalamus
are taken into account in the action-selection circuit. Although amygdala and
hippocampus play critical roles in learning reward-related behaviors, they are
not considered in the present model to reduce complexity. Also, some inputs
of the VTA (PPTg, LDTg) are not included in the model due to the same
reason.

3 A Computational Model for Nicotine Addiction

Nicotine addiction, like all other kinds of abusive substance addictions, de-
velops with the malfunctioning of the reward mechanism. Nicotine effects
the VTA DA signaling, which in turn modify the glutamatergic processes
responsible in learning. The behavioral choices depend on the learned situa-
tions, in nicotine addiction this choice is in favor of obtaining more nicotine.
Continuous exposure to nicotine causes behavioral choice modified by DA to
become rigid, resulting in addiction. The proposed model captures this prop-
erty through reinforcement learning which adapts a parameter that denotes
the effect of VTA DA signaling on action selection.
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3.1 The Proposed Model

In this work the approach proposed in [5] for nicotine addiction is combined
with the goal-directed A-S system proposed in [4]. The model has two parts:
a DA signaling module which is triggered by nicotine presence and an action-
selection module. As in [5], the effect of DA is demonstrated by a DA module
which is represented by a difference equation in order to model the dynamic
behavior of the process (1):

uDA(k + 1) = uDA(k) +muDA(−uDA(k) + sDA(ri, ni)) (1)

The activation function sDA is a sigmoidal function given as (2):

sDA(ri, ni) = 0.5(1 + tanh(ni ∗ ri− θDA)) (2)

ni is nicotine uptaking and θDA is the threshold setting the minimum tonic
DA. We take θDA = 0.1∗ni. ri is the reward signal initiated by nicotine. The
nicotine signal is taken as ni = 0.1. muDA is the learning rate in the DA
subsystem.

Previous works by [16, 17, 18, 19] suggest A-S models for the cortico-
basal ganglia-thalamic loop. In our action-selection module, module which
is acquired from [4], there are two components: premotor and motor loops
which model the dynamical system of cortex-basal ganglia-thalamus (C-BG-
TH) loops. The relevant equations for premotor and motor loops, respectively,
are (4) and (5):

ppm(k + 1) = f(λppm(k) +mpm(k) +Wcpm
I(k))

mpm(k + 1) = f(ppm(k) − dpm(k))
rpm(k + 1) = Wrpm

f(ppm(k)) (3)
npm(k + 1) = f(ppm(k))
dpm(k + 1) = f(Wdpm

npm(k) − rpm(k))

pm(k + 1) = f(λpm(k) +mm(k) + βppm + noise)
mm(k + 1) = f(pm(k) − dm(k))
rm(k + 1) = Wrmf(pm(k)) (4)
nm(k + 1) = f(pm(k))
dm(k + 1) = f(Wdmnm(k) − rm(k))

The variables ppm/m, mpm/m, rpm/m, npm/m, dpm/m stand for vectors cor-
responding to cortex, thalamus, striatum, subthalamic nucleus, and globus
pallidus interna/substantia nigra pars reticulate constituents of premotor and
motor loops, respectively. The dimensions of these vectors are determined by
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the number of action choices. For nicotine addiction, two actions are consid-
ered, “smoke” and “not smoke”, so the dimension of the system as a whole is
20. Just like in [4], the A-S module decides on an action outcome by evaluat-
ing the value of the presented stimuli. However, if the reward signal generated
for that stimulus is disappointing, a random response is generated. To enable
randomness, a noise signal is added to the motor loop. The premotor part
completes the evaluation and determines possible actions and then the motor
part decides on one of these possibilities by acting as a fine discriminator.
The sensory stimulus denoted by I, affects the premotor constituent of cor-
tex and the output of this loop modulates the motor constituent of cortex,
resulting in the action. For nicotine addiction model at this level this sensory
stimulus is considered to be neutral and a 2-dimensional vector with same
small component values is considered.

The nonlinear function is sigmoid and given as (5):

f = 0.5(1 + tanh(a(x− 0.45))) (5)

Wdpm/m
adds the diffusive effect of subthalamic nucleus and is a sym-

metrical matrix. The diagonal matrix Wrpm represents the effect of ventral
striatum (nucleus accumbens) on dorsal striatum (caudate nucleus and puta-
men). The representation of sensory stimulus is formed by the matrix Wcpm

.
The adaptation of weights Wcpm

and Wrpm/m
is done as below (6):

Wcpm
(k + 1) = Wcpm

(k) + ηcδ(k)pm(k)I(k)
′

(6)
Wrpm

(k + 1) = Wrpm
(k) + (7)

ηr((UDA + ni)(UDA − θwDA
)
′
(pm(k) − θ))

′
f(pm(k))rm(k)

The factors are the phasic DA activitiy UDA, running average of 10 steps is
denoted as in [5] by UDA. Thresholds for UDA and pm, respectively are θDA

and θ, and are taken as 0.1 times their respective signal. The learning rate
η is taken as 0.1. The variable δ represents the error in expectation and is
calculated as (8):

δ(k) = ri(k) + µV (k + 1) − V (k) (8)

The evaluation of the A-S based on the cortex input and the corresponding
reward is given as the value signal (9):

V (k) = (Wv + base)I(k) (9)

Here, Wv is a row vector and the term base is a row vector with identical
entries. An expectation signal based on the value signal is generated which,
together with ri, gives rise to the error δ. The error signal represents the mod-
ulating role of the neurotransmitters and modulates the behavior of dorsal
striatum stream via Wrpm

. The error signal strengthens the representation of
the sensory input via Wcpm

and updates the value of stimuli via Wv (10):
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Wv(k + 1) = Wv(k) + ηvδ(k)I(k)
′

(10)

3.2 Dynamics of Action Selection Module

The effect of the modification of Wrpm
on the premotor system is demon-

strated with the bifurcation diagrams. In order to explain explicitly what is
going on during the operation of the model, one set of parameter values are
considered below. Only cortex component, ppm, is taken into account because
it drives the motor loop.

Before learning begins, the randomly selected weight matrices are given
below:

Wrpm
=

[
0.5061
0.5061

]
,Wcpm

=
[
0.5410 0.1935
0.3310 0.4624

]
,Wv =

[
0.0185 0.0176

]
(11)

Using these weights with parameters taken as I = 0.1, Wdpm
as a 2 by 2

matrix composed of 0.5’s, λ = 0.5, a = 3 the following fixed points (1) are
obtained for the premotor system.

Table 1 The fixed points obtained before the weight matrices are adjusted by learning. In

the right columns the eigenvalues of the linearized system at these fixed points are shown.

Equilibrium point Eigenvalues

ppm1 0.9982 0.06 -0.05 0 + i 0.02 0 - i 0.02 0

ppm2 0.9981 0.06 -0.06 0 + i 0.02 0 - i 0.02 0

The first five component values of the equilibrium point are given in Table
1 and it can be followed that this equilibrium point is stable.

The bifurcation diagrams drawn at this point according to Wr parameter
are given in Figure 2. The labeled points in the diagrams show the bifurcation
points and are listed in Table 2. At the point with label 4 in the diagram
there is a Hopf bifurcation.

Table 2 Bifurcation values of ppm according to Wr parameter before learning (TY: type of

bifurcation, LAB: label, EP: End Point, LP: Limit Point Bifurcation, HB: Hopf Bifurcation)

TY LAB Wr1 ppm1 TY LAB Wr2 ppm2

EP 1 0.5 0.9981 EP 1 0.5 0.9981
EP 2 2.32 0.9983 EP 2 2.15 0.9983
LP 3 -0.046 0.816 LP 3 -0.04 0.827

HB 4 -0.045 0.735 HB 4 -0.23 0.305
EP 5 -2.24 0.133 EP 5 -2.09 0.128
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Fig. 2 Bifurcation diagrams of ppm according to Wr parameter before learning begins. a)

Bifurcation diagram for ppm1 b) Bifurcation diagram for ppm2

After the learning ends the weight matrices become:

Wrpm
=

[
1

0.7018

]
,Wcpm

=
[
1.1855 0.8380
0.2518 0.3833

]
,Wv =

[
0.5409 0.5409

]
(12)

The fixed points for the above parameters are given in Table 3. With the
above parameters the bifurcation diagrams in Figure 3 are obtained. The
labeled points in the diagrams show the bifurcation points and are listed in
Table 4. At the points with label 3 and 4 in the diagram there is a Hopf
bifurcation. The time-domain solutions of ppm obtained in the stable and
unstable regions are shown in Figure 4.

Table 3 The fixed points obtained after the weight matrices are adjusted by learning. In

the right columns the eigenvalues of the linearized system at this fixed points are shown.

Equilibrium point Eigenvalue

ppm1 0.9989 0.05 -0.05 0 + i 0.04 0 - i 0.035 0
ppm2 0.9981 0.07 -0.07 0 + i 0.05 0 - i 0.05 0

Table 4 Bifurcation values of ppm according to Wr parameter after learning (TY: type of

bifurcation, LAB: label, EP: End Point, LP: Limit Point Bifurcation, HB: Hopf Bifurcation)

TY LAB Wr1 ppm1 TY LAB Wr2 ppm2

EP 1 1 0.9989 EP 1 0.7018 0.9981
EP 2 2.03 0.9989 EP 2 2.224 0.9982

HB 3 -0.116 0.695 LP 3 -0.032 0.712

HB 4 -0.782 0.298 HB 4 -0.177 0.313
EP 5 -2.247 0.211 EP 5 -2.182 0.12
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Fig. 3 Bifurcation diagrams of ppm according toWr parameter after learning is completed.

a) Bifurcation diagram for ppm1 b) Bifurcation diagram for ppm2 .

Fig. 4 Time domain solutions of ppm (a) Wr1 = −1.022, ppm10 = 0.2673 (b) Wr2 =

−0.4183, ppm20 = 0.2006 (c) Wr1 = −0.1156, ppm10 = 0.6948 (d) Wr2 = −0.1773,
ppm20 = 0.3132 (e) Wr1 = −0.1008, ppm10 = 0.7879 (f) Wr2 = 0.317, ppm20 = 0.9975.
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When the bifurcations diagrams before and after learning are observed,
the most important difference is the unstable parameter range. It is larger in
after learning than the before learning. The parameter values corresponding
to unstable region and Hopf bifurcation evoke the “exploration” process while
the parameter values giving rise to stable equilibrium points correspond to an
action selected. If both components of the variable corresponding to cortex
component have almost same value near one or zero, than no choice between
possible actions is given, but if the value of one component is bigger than the
other, a choice is established.

3.3 The Simulation Results

To investigate the appropriateness of the proposed model the response to
nicotine uptaking explained in [5] is considered. The reward delivered at the
end of each smoking decision is taken as 1, and for each nonsmoking decision
is taken as -1. After 20 smoking decisions the system is considered to have
become an addict. Once 20 succesive decisions are “smoking”, the system is
considered to model an addict.

When the solution of the nonlinear discrete time system is settled to a
stable equilibrium, the action selected by the A-S module is determined by
calculating the solution of pm. The value function V and the error function
δ are calculated and using these functions the weight matrices Wcpm

, Wrpm
,

and Wv are updated. The simulation stops if the smoking action is selected
successively for 20 times.

The parameter values used in the simulation are λ = 0.5, β = 0.03, a = 3,
µDA = 0.1, ηc = 0.1, ηr = 0.1, ηv = 0.1 and base= 0.2. The initial values of
the weight matrices Wc and Wv are generated randomly with small positive
real numbers. The initial value of the diagonal matrix Wrpm

is ones. During
updating the matrix values,Wcpm

and Wrpm
are normalized. The matrices

Wdpm/m
and Wrm

are composed of 0.5’s and they are constant. The noise
signal is generated as a very small random number. The action outputs are
coded as [1 0]’ for smoking, [0 1]’ for nonsmoking, and [1 1]’ and [0 0]’ for
indecisive behaviors.

During the operation, if the learning takes less than 120 steps, it is consid-
ered to be successful, in other words addiction occurs. Otherwise the system
is not considered as an addict because too long step size means that addictive
behavior is not learned. In 20 successive runs the model completed the task
on average 63 trials with a standard deviation of 48.8542. The final matrices
for a successful trial when addiction is set up are given as follows:

Wrpm
=

[
0.9495

1

]
,Wcpm

=
[
0.5182 0.5205
0.2883 0.1202

]
(13)
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In Figure 5, the change in the value of δ is given for one run. δ remains
constant if the same choice is made successively, changes otherwise and as
learning takes place its value approaches zero.

Fig. 5 The difference in δ

4 Discussion and Conclusion

Reinforcement learning and opponent processes have important roles in abu-
sive drug addiction. To represent the effects of these processes, the phasic and
persistent modifications of nicotine in DA pathways and its administration of
the plasticity of the corticostriatal A-S circuits are modeled in [5]. The model
is composed of two modules working based on the effects of nicotine. The first
module is the A-S circuit, and the second module is the dopamine signaling
module which administers the action selections according to its outputs.

In this work a model of nicotine addiction based on an A-S module is pro-
posed. This module is composed of two components, A-S part corresponds
to the dorsal stream responsible for behavioral choices and the second part
corresponds to the ventral stream responsible for evaluation and modulates
the action selection. Thus, the A-S module, unlike the one in [5] is capable of
revealing reinforcement learning. The A-S circuit is realized as an intercon-
nected nonlinear dynamical systems corresponding to premotor and motor
loops and performs competitive learning guided by action evaluation. The bi-
furcation diagrams given demonstrate the effectiveness of the proposed model
especially for exploration.

This work supports the idea that addiction like goal-directed behavior
may arise from the interaction between the cortico-striato-thalamic loops
integrated with limbic structures. Modeling these loops as nonlinear dynam-
ical systems enables a realistic simulation of reinforcement learning in neu-
ral structures. The neural mechanisms of addiction are complicated and the
reasons that lead to addiction are not only molecular (nicotine, etc.), but
also social and psychological. Our model reduces the complex network of
the cortex-thalamus-basal ganglia-hippocampus-amygdala-VTA and consid-
ers only DA as the dominant neurotransmitter in addiction. We emphasize
reinforcement learning as the major process underlying addiction, however
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future work should also consider other psychological processes and other rel-
evant neurotransmitters as well.
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